Mechanisms contributing to tonic release at the cone photoreceptor ribbon synapse.
نویسندگان
چکیده
Time-resolved capacitance measurements in combination with fluorescence measurements of internal calcium suggested three kinetic components of release in acutely isolated cone photoreceptors of the tiger salamander. A 45-fF releasable pool, corresponding to about 1,000 vesicles, was identified. This pool could be depleted with a time constant of a few hundred milliseconds and its recovery from depletion was quite rapid (tau approximately 1 s). The fusion of vesicles in this pool was blocked by low-millimolar EGTA. Endocytosis was sufficiently slow that it is likely that refilling of the releasable pool occurred from preformed vesicles. A second, slower component of release (tau(depletion) approximately 3 s) was identified that was approximately twice the size of the releasable pool. This pool may serve as a first reserve pool that replenishes the releasable pool. Computer simulations indicate that the properties of the releasable and first reserve pools are sufficient to maintain synaptic signaling for several seconds in the face of near-maximal stimulations and in the absence of other sources of vesicles. Along with lower rates of depletion, additional mechanisms, such as replenishment from distal reserve pools and the fast recycling of vesicles, may further contribute to the maintenance of graded, tonic release from cone photoreceptors.
منابع مشابه
Quantal amplitude at the cone ribbon synapse can be adjusted by changes in cytosolic glutamate
PURPOSE Vision is encoded at photoreceptor synapses by the number of released vesicles and size of the post-synaptic response. We hypothesized that elevating cytosolic glutamate could enhance quantal size by increasing glutamate in vesicles. METHODS We introduced glutamate (10-40 mM) into cone terminals through a patch pipette and recorded excitatory post-synaptic currents (EPSCs) from horizo...
متن کاملThe Presynaptic Active Zone Protein Bassoon Is Essential for Photoreceptor Ribbon Synapse Formation in the Retina
The photoreceptor ribbon synapse is a highly specialized glutamatergic synapse designed for the continuous flow of synaptic vesicles to the neurotransmitter release site. The molecular mechanisms underlying ribbon synapse formation are poorly understood. We have investigated the role of the presynaptic cytomatrix protein Bassoon, a major component of the photoreceptor ribbon, in a mouse retina ...
متن کاملThe zebrafish nrc mutant reveals a role for the polyphosphoinositide phosphatase synaptojanin 1 in cone photoreceptor ribbon anchoring.
Visual, vestibular, and auditory neurons rely on ribbon synapses for rapid continuous release and recycling of synaptic vesicles. Molecular mechanisms responsible for the properties of ribbon synapses are mostly unknown. The zebrafish vision mutant nrc has unanchored ribbons and abnormal synaptic transmission at cone photoreceptor synapses. We used positional cloning to identify the nrc mutatio...
متن کاملCalmodulin enhances ribbon replenishment and shapes filtering of synaptic transmission by cone photoreceptors
At the first synapse in the vertebrate visual pathway, light-evoked changes in photoreceptor membrane potential alter the rate of glutamate release onto second-order retinal neurons. This process depends on the synaptic ribbon, a specialized structure found at various sensory synapses, to provide a supply of primed vesicles for release. Calcium (Ca(2+)) accelerates the replenishment of vesicles...
متن کاملMechanism of High-Frequency Signaling at a Depressing Ribbon Synapse
Ribbon synapses mediate continuous release in neurons that have graded voltage responses. While mammalian retinas can signal visual flicker at 80-100 Hz, the time constant, τ, for the refilling of a depleted vesicle release pool at cone photoreceptor ribbons is 0.7-1.1 s. Due to this prolonged depression, the mechanism for encoding high temporal frequencies is unclear. To determine the mechanis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 99 1 شماره
صفحات -
تاریخ انتشار 2008